ISSN 1600-5368

Mao Xin^a* and Yang-Gen Hu^b

^aGuilin Medical College, Guilin 541004, People's Republic of China, and ^bDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China

Correspondence e-mail: maoxin10@126.com

Key indicators

Single-crystal X-ray study T = 292 K Mean σ (C–C) = 0.004 Å R factor = 0.044 wR factor = 0.099 Data-to-parameter ratio = 9.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-(2-Furylmethylene)-2-(4-morpholino)-1-phenyl-1H-imidazol-4(5H)-one

> In the title compound, C₁₈H₁₇N₃O₃, the packing of the molecules in the crystal structure is mainly due to π - π and intermolecular C-H···O hydrogen-bonding interactions.

Received 29 November 2005 Accepted 5 December 2005 Online 10 December 2005

organic papers

Comment

Imidazolinone derivatives are of great importance because of their remarkable biological properties (Kiec-Kononowicz et al., 1998). In recent years, we have been engaged in the preparation of heterocyclic derivatives via the aza-Wittig reaction (Hu et al., 2004). The title compound, (I), may be used as a new precursor for obtaining bioactive molecules. The crystal structure of (I) is presented here.

Fig. 1 shows the molecular structure of (I), with the atomic numbering scheme. In the crystal structure, there are some weak intermolecular C-H···O hydrogen-bonding interactions (Table 1, Fig. 2) and intermolecular π - π interactions in which the centroid-to-centroid distance is 3.759 (17) Å.

Experimental

To a solution of iminophosphorane (1.32 g, 3 mmol) in dry dichloromethane (15 ml) was added phenyl isocyanate (3 mmol) under nitrogen at room temperature. After the reaction mixture had been allowed to stand for 10 h at room temperature, the solvent was removed under reduced pressure and diethyl ether/petroleum ether (1:2, 20 ml) was added to precipitate triphenylphosphine oxide. After filtration, the solvent was removed to give the carbodiimide, (II), which was used directly without further purification. To a solution of (II) in dichloromethane (15 ml) was added morpholine (3 mmol). After the reaction mixture had been allowed to stand for 6 h, the solution was concentrated under reduced pressure and the residue was recrystallized from dichloromethane/petroleum ether (1:4) to give the title compound, (I), in a yield of 85% (m.p. 491 K). Suitable crystals were obtained by vapour diffusion of ethanol and dichloromethane at room temperature. Spectroscopic analysis: ¹H NMR (CDCl₃, 200 MHz) 3.33 (*t*, 4H, NCH₂, *J* = 4.4 Hz), 3.64 (*t*, 4H, OCH₂, J = 4.9 Hz), 6.80 (s, 1H, ==CH), 6.51–7.49 (m, 8H, Ar-H). MS (EI, 70 eV) m/z (%): 323 (M⁺, 100), 266 (17), 189 (30), 77 (77). Elemental analysis: calculated for C₁₈H₁₇N₃O₃: C 66.86, H 5.30, N 13.00%; found: C 66.71, H 5.42, N 13.05%.

© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

organic papers

Crystal data

C ₁₈ H ₁₇ N ₃ O ₃
$M_r = 323.35$
Monoclinic, P2 ₁
a = 5.5926 (12) Å
b = 8.8449 (19) Å
c = 16.442 (4) Å
$\beta = 97.536 (3)^{\circ}$
V = 806.3 (3) Å ³
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
5883 measured reflections
1970 independent reflections

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.044$	$w = 1/[\sigma^2(F_o^2) + (0.051P)^2]$
$wR(F^2) = 0.099$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
1970 reflections	$\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^{-3}$
217 parameters	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

 $D_x = 1.332 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 2460 reflections $\theta = 2.5-24.9^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 292 (2) K Block, yellow 0.20 × 0.20 × 0.10 mm

1705 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.082$

 $\begin{array}{l} \theta_{\rm max} = 27.5^\circ \\ h = -7 \rightarrow 7 \end{array}$

 $k = -11 \rightarrow 11$

 $l = -20 \rightarrow 21$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C18-H18B\cdots O2^{i}$	0.97	2.55	3.345 (4)	139
$C15-H15A\cdots N1^{ii}$	0.97	2.55	3.374 (4)	143
C5-H5···O3 ⁱⁱⁱ	0.93	2.39	3.303 (3)	166
			. ,	

Symmetry codes: (i) x, y - 1, z; (ii) x - 1, y, z; (iii) x + 1, y + 1, z.

H atoms were placed in calculated positions and treated as riding atoms (C–H in the range 0.93–0.98 Å), with U_{iso} (H) = 1.2 (CH) or 1.5 (CH₃) times U_{eq} (parent atom). In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2001); software used to prepare material for publication: *SHELXTL*.

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 1

View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

Figure 2

Packing diagram of (I), showing hydrogen-bonding associations (dashed lines) and the π - π stacking interactions. H atoms have been omitted.

Hu, Y. G., Yang, S. J. & Ding, M. W. (2004). *Phosphorus Sulfur*, **179**, 1933–1939.
 Kiec-Kononowicz, K., Szymanska, E., Motyl, M., Holzer, W., Bialecka, A. & Kasprowicz, A. (1998). *Pharmazie*, **53**, 680–684.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (2001). *SHELXTL*. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.